Brayton Cycle (Gas Turbine) Ideal vs Real Operation for Power Application Analysis

Provided by:
0/10 stars
based on  0 reviews
Provided by:
Cost $20
Start Date On demand
Brayton Cycle (Gas Turbine) Ideal vs Real Operation for Power Application Analysis

Course Details

Cost

$20

Upcoming Schedule

  • On demand

Course Provider

Coggno online courses
Coggno is a comprehensive marketplace features thousands of high-quality training courses created by world-class training developers, and covers virtually all industries – including human resources, management, healthcare, safety, and many others. Coggno provides a “one stop shop” resource to meet all your specific education and training needs, and provides simple, efficient delivery via our LMS platform.
Coggno is a comprehensive marketplace features thousands of high-quality training courses created by world-class training developers, and covers virtually all industries – including human resources, management, healthcare, safety, and many others. Coggno provides a “one stop shop” resource to meet all your specific education and training needs, and provides simple, efficient delivery via our LMS platform.
Provider Subject Specialization
Humanities
Business & Management
2 reviews

Course Description

In this course material, the open, simple Brayton Cycle used for stationary power generation is considered. The Brayton Cycle thermal efficiency is presented only for the air as the working fluid.The thermal efficiency derivation is presented with a simple mathematical approach.The Brayton Cycle is presented in a T - s diagram and its major performance trends (thermal efficiency, specific power output and power output) are plotted in a few figures as a function of compression ratio, gas turbine inlet temperature, working fluid mass flow rate and both isentropic compression and expansion efficiency.It should be noted that this course material does not deal with costs (capital, operational or maintenance). In this course material, the student gets familiar with the Brayton Cycle, its components, T - s diagram, ideal and real operation and major performance trends.
Reviews 0/10 stars
0 Reviews for Brayton Cycle (Gas Turbine) Ideal vs Real Operation for Power Application Analysis

Ratings details

  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars

Rankings are based on a provider's overall CourseTalk score, which takes into account both average rating and number of ratings. Stars round to the nearest half.

No reviews yet. Be the first!

Rating Details


  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars

Rankings are based on a provider's overall CourseTalk score, which takes into account both average rating and number of ratings. Stars round to the nearest half.