Design and Interpretation of Clinical Trials
Provided by:

Provided by:

Course Details
Cost
FREE,
Add a Verified Certificate for $49
Upcoming Schedule
- Upcoming
Course Provider

Coursera online courses
Coursera's online classes are designed to help students achieve mastery over
course material. Some of the best professors in the world - like neurobiology
professor and author Peggy Mason from the University of Chicago, and computer
science professor and Folding@Home director Vijay Pande - will supplement your
knowledge through video lectures. They will also provide challenging
assessments, interactive exercises during each lesson, and the opportunity to
use a mobile app to keep up with yo...
Coursera's online classes are designed to help students achieve mastery over
course material. Some of the best professors in the world - like neurobiology
professor and author Peggy Mason from the University of Chicago, and computer
science professor and Folding@Home director Vijay Pande - will supplement your
knowledge through video lectures. They will also provide challenging
assessments, interactive exercises during each lesson, and the opportunity to
use a mobile app to keep up with your coursework. Coursera also partners with
the US State Department to create “learning hubs” around the world. Students
can get internet access, take courses, and participate in weekly in-person
study groups to make learning even more collaborative. Begin your journey into
the mysteries of the human brain by taking courses in neuroscience. Learn how
to navigate the data infrastructures that multinational corporations use when
you discover the world of data analysis. Follow one of Coursera’s “Skill
Tracks”. Or try any one of its more than 560 available courses to help you
achieve your academic and professional goals.
Provider Subject Specialization
Humanities
Sciences & Technology
Course Description
Clinical trials are experiments designed to evaluate new interventions to prevent or treat disease in humans. The interventions evaluated can be drugs, devices (e.g., hearing aid), surgeries, behavioral interventions (e.g., smoking cessation program), community health programs (e.g. cancer screening programs) or health delivery systems (e.g., special care units for hospital admissions). We consider clinical trials experiments because the investigators rather than the patients or their doctors select the treatment the patients receive. Results from randomized clinical trials are usually considered the highest level of evidence for determining whether a treatment is effective because trials incorporates features to ensure that evaluation of the benefits and risks of treatments are objective and unbiased. The FDA requires that drugs or biologics (e.g., vaccines) are shown to be effective in clinical trials before they can be sold in the...
Clinical trials are experiments designed to evaluate new interventions to prevent or treat disease in humans. The interventions evaluated can be drugs, devices (e.g., hearing aid), surgeries, behavioral interventions (e.g., smoking cessation program), community health programs (e.g. cancer screening programs) or health delivery systems (e.g., special care units for hospital admissions). We consider clinical trials experiments because the investigators rather than the patients or their doctors select the treatment the patients receive. Results from randomized clinical trials are usually considered the highest level of evidence for determining whether a treatment is effective because trials incorporates features to ensure that evaluation of the benefits and risks of treatments are objective and unbiased. The FDA requires that drugs or biologics (e.g., vaccines) are shown to be effective in clinical trials before they can be sold in the US.
The course will explain the basic principles for design of randomized clinical trials and how they should be reported. In the first part of the course, students will be introduced to terminology used in clinical trials and the several common designs used for clinical trials, such as parallel and cross-over designs. We will also explain some of the mechanics of clinical trials, like randomization and blinding of treatment. In the second half of the course, we will explain how clinical trials are analyzed and interpreted. Finally, we will review the essential ethical consideration involved in conducting experiments on people.
