Introduction à la théorie de Galois

Provided by:
0/10 stars
based on  0 reviews
Provided by:
Cost FREE
Start Date Upcoming

Course Details

Cost

FREE

Upcoming Schedule

  • Upcoming

Course Provider

Coursera online courses
Coursera's online classes are designed to help students achieve mastery over course material. Some of the best professors in the world - like neurobiology professor and author Peggy Mason from the University of Chicago, and computer science professor and Folding@Home director Vijay Pande - will supplement your knowledge through video lectures. They will also provide challenging assessments, interactive exercises during each lesson, and the opportunity to use a mobile app to keep up with yo...
Coursera's online classes are designed to help students achieve mastery over course material. Some of the best professors in the world - like neurobiology professor and author Peggy Mason from the University of Chicago, and computer science professor and Folding@Home director Vijay Pande - will supplement your knowledge through video lectures. They will also provide challenging assessments, interactive exercises during each lesson, and the opportunity to use a mobile app to keep up with your coursework. Coursera also partners with the US State Department to create “learning hubs” around the world. Students can get internet access, take courses, and participate in weekly in-person study groups to make learning even more collaborative. Begin your journey into the mysteries of the human brain by taking courses in neuroscience. Learn how to navigate the data infrastructures that multinational corporations use when you discover the world of data analysis. Follow one of Coursera’s “Skill Tracks”. Or try any one of its more than 560 available courses to help you achieve your academic and professional goals.

Provider Subject Specialization
Humanities
Sciences & Technology
4721 reviews

Course Description

Le cours expose la théorie de Galois, du classique critère de non-résolubilité des équations polynomiales aux méthodes plus avancées de calcul de groupes de Galois par réduction modulo un nombre premier. Le thème général de cette théorie est l'étude des racines d'un polynôme et concerne en particulier la possibilité de les exprimer à partir des coefficients de ce polynôme. Evariste Galois considère les symétries de ces racines et associe ainsi à ce polynôme un groupe de permutations de ses racines, que l'on appelle maintenant son groupe de Galois. Il dégage à cette occasion pour la première fois, dans ce cadre, la notion de groupe, maintenant omniprésente en mathématiques. Son étude lui permet d'expliquer pourquoi les racines d'une équation prise au hasard ne s'expriment en général pas par des formules algébriques faisant intervenir ses coefficients à partir du degré 5, un résultat démontré auparavant par Abel. Plus généralement, l'... Le cours expose la théorie de Galois, du classique critère de non-résolubilité des équations polynomiales aux méthodes plus avancées de calcul de groupes de Galois par réduction modulo un nombre premier. Le thème général de cette théorie est l'étude des racines d'un polynôme et concerne en particulier la possibilité de les exprimer à partir des coefficients de ce polynôme. Evariste Galois considère les symétries de ces racines et associe ainsi à ce polynôme un groupe de permutations de ses racines, que l'on appelle maintenant son groupe de Galois. Il dégage à cette occasion pour la première fois, dans ce cadre, la notion de groupe, maintenant omniprésente en mathématiques. Son étude lui permet d'expliquer pourquoi les racines d'une équation prise au hasard ne s'expriment en général pas par des formules algébriques faisant intervenir ses coefficients à partir du degré 5, un résultat démontré auparavant par Abel. Plus généralement, l'étude du groupe de Galois du polynôme permet de dire exactement quand une telle formule existe. C'est ce que l'on appelle la correspondance de Galois : elle relie d'une part la théorie des corps, d'autre part la théorie des groupes.Ce cours expliquera cette théorie en n'utilisant que des résultats de base d'algèbre linéaire. Nous étudierons d'un côté la théorie des corps, c'est-à-dire la façon dont les corps s'emboîtent les uns dans les autres, en introduisant la notion de nombre algébrique (essentiellement les racines de polynômes). D'un autre côté, nous introduirons les éléments nécessaires à l'étude des groupes de permutations. Cela nous permettra d'expliquer la théorie de Galois, non seulement dans son cadre d'origine, c'est-à-dire quand les coefficients du polynôme sont des nombres entiers, mais aussi dans un cadre plus général, par exemple lorsqu'on réduit ces coefficients modulo un nombre premier p. Le cours culminera avec une comparaison des groupes de Galois dans ces deux situations (« entière » et après réduction modulo p), fournissant ainsi un outil de calcul puissant de ces groupes. Ce cours est l'occasion d'aborder des notions d'algèbre variées, essentielles dans de nombreux domaines des mathématiques, de manière très simple pour très rapidement aboutir à des résultats tout à fait remarquables. Nous n'avons pas cherché la généralité maximale mais au contraire à aller rapidement à l'essentiel en utilisant le minimum de formalisme abstrait. Le FLOTeur intéressé sera alors armé pour aller plus loin, notamment grâce à la bibliographie ou à des cours plus avancés.
Introduction à la théorie de Galois course image
Reviews 0/10 stars
0 Reviews for Introduction à la théorie de Galois

Ratings details

  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars

Rankings are based on a provider's overall CourseTalk score, which takes into account both average rating and number of ratings. Stars round to the nearest half.

No reviews yet. Be the first!

Rating Details


  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars

Rankings are based on a provider's overall CourseTalk score, which takes into account both average rating and number of ratings. Stars round to the nearest half.