Introduction to Systems Biology

Provided by:
0/10 stars
based on  0 reviews
Provided by:
Cost FREE , Add a Verified Certificate for $49
Start Date Upcoming

Course Details

Cost

FREE,
Add a Verified Certificate for $49

Upcoming Schedule

  • Upcoming

Course Provider

Coursera online courses
Coursera's online classes are designed to help students achieve mastery over course material. Some of the best professors in the world - like neurobiology professor and author Peggy Mason from the University of Chicago, and computer science professor and Folding@Home director Vijay Pande - will supplement your knowledge through video lectures. They will also provide challenging assessments, interactive exercises during each lesson, and the opportunity to use a mobile app to keep up with yo...
Coursera's online classes are designed to help students achieve mastery over course material. Some of the best professors in the world - like neurobiology professor and author Peggy Mason from the University of Chicago, and computer science professor and Folding@Home director Vijay Pande - will supplement your knowledge through video lectures. They will also provide challenging assessments, interactive exercises during each lesson, and the opportunity to use a mobile app to keep up with your coursework. Coursera also partners with the US State Department to create “learning hubs” around the world. Students can get internet access, take courses, and participate in weekly in-person study groups to make learning even more collaborative. Begin your journey into the mysteries of the human brain by taking courses in neuroscience. Learn how to navigate the data infrastructures that multinational corporations use when you discover the world of data analysis. Follow one of Coursera’s “Skill Tracks”. Or try any one of its more than 560 available courses to help you achieve your academic and professional goals.

Provider Subject Specialization
Humanities
Sciences & Technology
4639 reviews

Course Description

This course will introduce the student to contemporary Systems Biology focused on mammalian cells, their constituents and their functions. Biology is moving from molecular to modular. As our knowledge of our genome and gene expression deepens and we develop lists of molecules (proteins, lipids, ions) involved in cellular processes, we need to understand how these molecules interact with each other to form modules that act as discrete functional systems. These systems underlie core subcellular processes such as signal transduction, transcription, motility and electrical excitability. In turn these processes come together to exhibit cellular behaviors such as secretion, proliferation and action potentials. What are the properties of such subcellular and cellular systems? What are the mechanisms by which emergent behaviors of systems arise? What types of experiments inform systems-level thinking? Why do we need computation and simulatio... This course will introduce the student to contemporary Systems Biology focused on mammalian cells, their constituents and their functions. Biology is moving from molecular to modular. As our knowledge of our genome and gene expression deepens and we develop lists of molecules (proteins, lipids, ions) involved in cellular processes, we need to understand how these molecules interact with each other to form modules that act as discrete functional systems. These systems underlie core subcellular processes such as signal transduction, transcription, motility and electrical excitability. In turn these processes come together to exhibit cellular behaviors such as secretion, proliferation and action potentials. What are the properties of such subcellular and cellular systems? What are the mechanisms by which emergent behaviors of systems arise? What types of experiments inform systems-level thinking? Why do we need computation and simulations to understand these systems? The course will develop multiple lines of reasoning to answer the questions listed above. Two major reasoning threads are: the design, execution and interpretation of multivariable experiments that produce large data sets; quantitative reasoning, models and simulations. Examples will be discussed to demonstrate “how” cell- level functions arise and “why” mechanistic knowledge allows us to predict cellular behaviors leading to disease states and drug responses.
Introduction to Systems Biology course image
Reviews 0/10 stars
0 Reviews for Introduction to Systems Biology

Ratings details

  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars

Rankings are based on a provider's overall CourseTalk score, which takes into account both average rating and number of ratings. Stars round to the nearest half.

No reviews yet. Be the first!

Rating Details


  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars

Rankings are based on a provider's overall CourseTalk score, which takes into account both average rating and number of ratings. Stars round to the nearest half.