Introduction to Systems Biology
Provided by:

Provided by:

Course Details
Cost
FREE,
Add a Verified Certificate for $49
Upcoming Schedule
- Upcoming
Course Provider

Coursera online courses
Coursera's online classes are designed to help students achieve mastery over
course material. Some of the best professors in the world - like neurobiology
professor and author Peggy Mason from the University of Chicago, and computer
science professor and Folding@Home director Vijay Pande - will supplement your
knowledge through video lectures. They will also provide challenging
assessments, interactive exercises during each lesson, and the opportunity to
use a mobile app to keep up with yo...
Coursera's online classes are designed to help students achieve mastery over
course material. Some of the best professors in the world - like neurobiology
professor and author Peggy Mason from the University of Chicago, and computer
science professor and Folding@Home director Vijay Pande - will supplement your
knowledge through video lectures. They will also provide challenging
assessments, interactive exercises during each lesson, and the opportunity to
use a mobile app to keep up with your coursework. Coursera also partners with
the US State Department to create “learning hubs” around the world. Students
can get internet access, take courses, and participate in weekly in-person
study groups to make learning even more collaborative. Begin your journey into
the mysteries of the human brain by taking courses in neuroscience. Learn how
to navigate the data infrastructures that multinational corporations use when
you discover the world of data analysis. Follow one of Coursera’s “Skill
Tracks”. Or try any one of its more than 560 available courses to help you
achieve your academic and professional goals.
Provider Subject Specialization
Humanities
Sciences & Technology
Course Description
This course will introduce the student to contemporary Systems Biology focused on mammalian cells, their constituents and their functions. Biology is moving from molecular to modular. As our knowledge of our genome and gene expression deepens and we develop lists of molecules (proteins, lipids, ions) involved in cellular processes, we need to understand how these molecules interact with each other to form modules that act as discrete functional systems. These systems underlie core subcellular processes such as signal transduction, transcription, motility and electrical excitability. In turn these processes come together to exhibit cellular behaviors such as secretion, proliferation and action potentials. What are the properties of such subcellular and cellular systems? What are the mechanisms by which emergent behaviors of systems arise? What types of experiments inform systems-level thinking? Why do we need computation and simulatio...
This course will introduce the student to contemporary Systems Biology focused on mammalian cells, their constituents and their functions. Biology is moving from molecular to modular. As our knowledge of our genome and gene expression deepens and we develop lists of molecules (proteins, lipids, ions) involved in cellular processes, we need to understand how these molecules interact with each other to form modules that act as discrete functional systems. These systems underlie core subcellular processes such as signal transduction, transcription, motility and electrical excitability. In turn these processes come together to exhibit cellular behaviors such as secretion, proliferation and action potentials. What are the properties of such subcellular and cellular systems? What are the mechanisms by which emergent behaviors of systems arise? What types of experiments inform systems-level thinking? Why do we need computation and simulations to understand these systems?
The course will develop multiple lines of reasoning to answer the questions listed above. Two major reasoning threads are: the design, execution and interpretation of multivariable experiments that produce large data sets; quantitative reasoning, models and simulations. Examples will be discussed to demonstrate “how” cell- level functions arise and “why” mechanistic knowledge allows us to predict cellular behaviors leading to disease states and drug responses.
