Обучение на размеченных данных

Provided by:
0/10 stars
based on  0 reviews
Provided by:
Cost FREE , Add a Verified Certificate for $99
Start Date Upcoming
Обучение на размеченных данных

Course Details

Cost

FREE,
Add a Verified Certificate for $99

Upcoming Schedule

  • Upcoming

Course Provider

Coursera online courses
Coursera's online classes are designed to help students achieve mastery over course material. Some of the best professors in the world - like neurobiology professor and author Peggy Mason from the University of Chicago, and computer science professor and Folding@Home director Vijay Pande - will supplement your knowledge through video lectures. They will also provide challenging assessments, interactive exercises during each lesson, and the opportunity to use a mobile app to keep up with yo...
Coursera's online classes are designed to help students achieve mastery over course material. Some of the best professors in the world - like neurobiology professor and author Peggy Mason from the University of Chicago, and computer science professor and Folding@Home director Vijay Pande - will supplement your knowledge through video lectures. They will also provide challenging assessments, interactive exercises during each lesson, and the opportunity to use a mobile app to keep up with your coursework. Coursera also partners with the US State Department to create “learning hubs” around the world. Students can get internet access, take courses, and participate in weekly in-person study groups to make learning even more collaborative. Begin your journey into the mysteries of the human brain by taking courses in neuroscience. Learn how to navigate the data infrastructures that multinational corporations use when you discover the world of data analysis. Follow one of Coursera’s “Skill Tracks”. Or try any one of its more than 560 available courses to help you achieve your academic and professional goals.

Provider Subject Specialization
Humanities
Sciences & Technology
4724 reviews

Course Description

Обучение на размеченных данных или обучение с учителем – это наиболее распространенный класс задач машинного обучения. К нему относятся те задачи, где нужно научиться предсказывать некоторую величину для любого объекта, имея конечное число примеров. Это может быть предсказание уровня пробок на участке дороги, определение возраста пользователя по его действиям в интернете, предсказание цены, по которой будет куплена подержанная машина. В этом курсе вы научитесь формулировать и, конечно, решать такие задачи. В центре нашего внимания будут успешно применяемые на практике алгоритмы классификации и регрессии: линейные модели, нейронные сети, решающие деревья и так далее. Особый акцент мы сделаем на такой мощной технике как построение композиций, которая позволяет существенно повысить качество отдельных алгоритмов и широко используется при решении прикладных задач. В частности, мы узнаем про случайные леса и про метод градиентного бустинг... Обучение на размеченных данных или обучение с учителем – это наиболее распространенный класс задач машинного обучения. К нему относятся те задачи, где нужно научиться предсказывать некоторую величину для любого объекта, имея конечное число примеров. Это может быть предсказание уровня пробок на участке дороги, определение возраста пользователя по его действиям в интернете, предсказание цены, по которой будет куплена подержанная машина. В этом курсе вы научитесь формулировать и, конечно, решать такие задачи. В центре нашего внимания будут успешно применяемые на практике алгоритмы классификации и регрессии: линейные модели, нейронные сети, решающие деревья и так далее. Особый акцент мы сделаем на такой мощной технике как построение композиций, которая позволяет существенно повысить качество отдельных алгоритмов и широко используется при решении прикладных задач. В частности, мы узнаем про случайные леса и про метод градиентного бустинга. Построение предсказывающих алгоритмов — это лишь часть работы при решении задачи анализа данных. Мы разберемся и с другими этапами: оценивание обобщающей способности алгоритмов, подбор параметров модели, выбор и подсчет метрик качества.
Обучение на размеченных данных course image
Reviews 0/10 stars
0 Reviews for Обучение на размеченных данных

Ratings details

  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars

Rankings are based on a provider's overall CourseTalk score, which takes into account both average rating and number of ratings. Stars round to the nearest half.

No reviews yet. Be the first!

Rating Details


  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars

Rankings are based on a provider's overall CourseTalk score, which takes into account both average rating and number of ratings. Stars round to the nearest half.