Particle Physics: an Introduction

Provided by:
9/10 stars
based on  1 review
Provided by:
Cost FREE , Add a Verified Certificate for $49
Start Date Upcoming

Course Details

Cost

FREE,
Add a Verified Certificate for $49

Upcoming Schedule

  • Upcoming

Course Provider

Coursera online courses
Coursera's online classes are designed to help students achieve mastery over course material. Some of the best professors in the world - like neurobiology professor and author Peggy Mason from the University of Chicago, and computer science professor and Folding@Home director Vijay Pande - will supplement your knowledge through video lectures. They will also provide challenging assessments, interactive exercises during each lesson, and the opportunity to use a mobile app to keep up with yo...
Coursera's online classes are designed to help students achieve mastery over course material. Some of the best professors in the world - like neurobiology professor and author Peggy Mason from the University of Chicago, and computer science professor and Folding@Home director Vijay Pande - will supplement your knowledge through video lectures. They will also provide challenging assessments, interactive exercises during each lesson, and the opportunity to use a mobile app to keep up with your coursework. Coursera also partners with the US State Department to create “learning hubs” around the world. Students can get internet access, take courses, and participate in weekly in-person study groups to make learning even more collaborative. Begin your journey into the mysteries of the human brain by taking courses in neuroscience. Learn how to navigate the data infrastructures that multinational corporations use when you discover the world of data analysis. Follow one of Coursera’s “Skill Tracks”. Or try any one of its more than 560 available courses to help you achieve your academic and professional goals.

Provider Subject Specialization
Humanities
Sciences & Technology
4719 reviews

Course Description

This course introduces you to subatomic physics, i.e. the physics of nuclei and particles. More specifically, the following questions are addressed: - What are the concepts of particle physics and how are they implemented? - What are the properties of atomic nuclei and how can one use them? - How does one accelerate and detect particles and measure their properties? - What does one learn from particle reactions at high energies and particle decays? - How do electromagnetic interactions work and how can one use them? - How do strong interactions work and why are they difficult to understand? - How do weak interactions work and why are they so special? - What is the mass of objects at the subatomic level and how does the Higgs boson intervene? - How does one search for new phenomena beyond the known ones? - What can one learn from particle physics concerning astrophysics and the Universe as a whole? The course is structured in eight... This course introduces you to subatomic physics, i.e. the physics of nuclei and particles. More specifically, the following questions are addressed: - What are the concepts of particle physics and how are they implemented? - What are the properties of atomic nuclei and how can one use them? - How does one accelerate and detect particles and measure their properties? - What does one learn from particle reactions at high energies and particle decays? - How do electromagnetic interactions work and how can one use them? - How do strong interactions work and why are they difficult to understand? - How do weak interactions work and why are they so special? - What is the mass of objects at the subatomic level and how does the Higgs boson intervene? - How does one search for new phenomena beyond the known ones? - What can one learn from particle physics concerning astrophysics and the Universe as a whole? The course is structured in eight modules. Following the first one which introduces our subject, the modules 2 (nuclear physics) and 3 (accelerators and detectors) are rather self contained and can be studied separately. The modules 4 to 6 go into more depth about matter and forces as described by the standard model of particle physics. Module 7 deals with our ways to search for new phenomena. And the last module introduces you to two mysterious components of the Universe, namely Dark Matter and Dark Energy.
Particle Physics: an Introduction course image
Reviews 9/10 stars
1 Review for Particle Physics: an Introduction

Ratings details

  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars

Rankings are based on a provider's overall CourseTalk score, which takes into account both average rating and number of ratings. Stars round to the nearest half.

Sort By
Kristina Šekrst profile image
Kristina Šekrst profile image
10/10 starsCompleted
  • 102 reviews
  • 102 completed
2 years, 4 months ago
I have to say praise for the instructor, who was very kind and present on the forums, and clearing any issues the students had. The course covers basic particle physics, fundamental forces, and basic cosmology a bit, so you'll get a nice overview of the discipline. However, do note that prerequisites are there for a reason, so if you have no background knowledge, especially in calculus, you can easily get lost. But there are further references for self-study, and discussion forums are very helpful. I liked the course, and the enthusiasm of the team who translated the course to English. The course was nicely structured with useful practice quizzes before weekly homework quizzes, and there was also lots of bonus material, which was great. This was the first run of the course, and it had some beginner's problems, but nevertheless I believe it has a great potential to become a top course.
Was this review helpful? Yes0
 Flag

Rating Details


  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars

Rankings are based on a provider's overall CourseTalk score, which takes into account both average rating and number of ratings. Stars round to the nearest half.