Quantitative Model Checking

Provided by:
0/10 stars
based on  0 reviews
Provided by:
Cost FREE , Add a Verified Certificate for $49
Start Date Upcoming

Course Details

Cost

FREE,
Add a Verified Certificate for $49

Upcoming Schedule

  • Upcoming

Course Provider

Coursera online courses
Coursera's online classes are designed to help students achieve mastery over course material. Some of the best professors in the world - like neurobiology professor and author Peggy Mason from the University of Chicago, and computer science professor and Folding@Home director Vijay Pande - will supplement your knowledge through video lectures. They will also provide challenging assessments, interactive exercises during each lesson, and the opportunity to use a mobile app to keep up with yo...
Coursera's online classes are designed to help students achieve mastery over course material. Some of the best professors in the world - like neurobiology professor and author Peggy Mason from the University of Chicago, and computer science professor and Folding@Home director Vijay Pande - will supplement your knowledge through video lectures. They will also provide challenging assessments, interactive exercises during each lesson, and the opportunity to use a mobile app to keep up with your coursework. Coursera also partners with the US State Department to create “learning hubs” around the world. Students can get internet access, take courses, and participate in weekly in-person study groups to make learning even more collaborative. Begin your journey into the mysteries of the human brain by taking courses in neuroscience. Learn how to navigate the data infrastructures that multinational corporations use when you discover the world of data analysis. Follow one of Coursera’s “Skill Tracks”. Or try any one of its more than 560 available courses to help you achieve your academic and professional goals.

Provider Subject Specialization
Humanities
Sciences & Technology
4679 reviews

Course Description

The integration of ICT (information and communications technology) in different applications is rapidly increasing in e.g. Embedded and Cyber physical systems, Communication protocols and Transportation systems. Hence, their reliability and dependability increasingly depends on software. Defects can be fatal and extremely costly (with regards to mass-production of products and safety-critical systems). First, a model of the real system has to be built. In the simplest case, the model reflects all possible states that the system can reach and all possible transitions between states in a (labelled) State Transition System. When adding probabilities and discrete time to the model, we are dealing with so-called Discrete-time Markov chains which in turn can be extended with continuous timing to Continuous-time Markov chains. Both formalisms have been used widely for modeling and performance and dependability evaluation of computer and co... The integration of ICT (information and communications technology) in different applications is rapidly increasing in e.g. Embedded and Cyber physical systems, Communication protocols and Transportation systems. Hence, their reliability and dependability increasingly depends on software. Defects can be fatal and extremely costly (with regards to mass-production of products and safety-critical systems). First, a model of the real system has to be built. In the simplest case, the model reflects all possible states that the system can reach and all possible transitions between states in a (labelled) State Transition System. When adding probabilities and discrete time to the model, we are dealing with so-called Discrete-time Markov chains which in turn can be extended with continuous timing to Continuous-time Markov chains. Both formalisms have been used widely for modeling and performance and dependability evaluation of computer and communication systems in a wide variety of domains. These formalisms are well understood, mathematically attractive while at the same time flexible enough to model complex systems. Model checking focuses on the qualitative evaluation of the model. As formal verification method, model checking analyzes the functionality of the system model. A property that needs to be analyzed has to be specified in a logic with consistent syntax and semantics. For every state of the model, it is then checked whether the property is valid or not. The main focus of this course is on quantitative model checking for Markov chains, for which we will discuss efficient computational algorithms. The learning objectives of this course are as follows: - Express dependability properties for different kinds of transition systems . - Compute the evolution over time for Markov chains. - Check whether single states satisfy a certain formula and compute the satisfaction set for properties.
Quantitative Model Checking course image
Reviews 0/10 stars
0 Reviews for Quantitative Model Checking

Ratings details

  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars

Rankings are based on a provider's overall CourseTalk score, which takes into account both average rating and number of ratings. Stars round to the nearest half.

No reviews yet. Be the first!

Rating Details


  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars

Rankings are based on a provider's overall CourseTalk score, which takes into account both average rating and number of ratings. Stars round to the nearest half.