Transmission electron microscopy for materials science
Provided by:

Provided by:

Course Details
Cost
FREE
Upcoming Schedule
- On demand
Course Provider

Coursera online courses
Coursera's online classes are designed to help students achieve mastery over
course material. Some of the best professors in the world - like neurobiology
professor and author Peggy Mason from the University of Chicago, and computer
science professor and Folding@Home director Vijay Pande - will supplement your
knowledge through video lectures. They will also provide challenging
assessments, interactive exercises during each lesson, and the opportunity to
use a mobile app to keep up with yo...
Coursera's online classes are designed to help students achieve mastery over
course material. Some of the best professors in the world - like neurobiology
professor and author Peggy Mason from the University of Chicago, and computer
science professor and Folding@Home director Vijay Pande - will supplement your
knowledge through video lectures. They will also provide challenging
assessments, interactive exercises during each lesson, and the opportunity to
use a mobile app to keep up with your coursework. Coursera also partners with
the US State Department to create “learning hubs” around the world. Students
can get internet access, take courses, and participate in weekly in-person
study groups to make learning even more collaborative. Begin your journey into
the mysteries of the human brain by taking courses in neuroscience. Learn how
to navigate the data infrastructures that multinational corporations use when
you discover the world of data analysis. Follow one of Coursera’s “Skill
Tracks”. Or try any one of its more than 560 available courses to help you
achieve your academic and professional goals.
Provider Subject Specialization
Humanities
Sciences & Technology
Course Description
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for taking a practical training on the TEM.
This course provides a comprehensive introduction to transmission electron microscopy (TEM) in the field of materials science. For an instrument operated by a single user, modern TEM provides an analytical platform with unsurpassed versatility, giving access to structural and chemical information from the micrometer to the sub-angstrom scale. In a thin, electron-transparent sample one can measure the crystallinity, grain structure, size, and defects, and the chemical composition. The crystal lattice can be imaged with atomic resolution, allowing observation of grain boundaries and interfaces. It is the only direct structural analysis method for studying nanoparticles.
With this course you will gain a...
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for taking a practical training on the TEM.
This course provides a comprehensive introduction to transmission electron microscopy (TEM) in the field of materials science. For an instrument operated by a single user, modern TEM provides an analytical platform with unsurpassed versatility, giving access to structural and chemical information from the micrometer to the sub-angstrom scale. In a thin, electron-transparent sample one can measure the crystallinity, grain structure, size, and defects, and the chemical composition. The crystal lattice can be imaged with atomic resolution, allowing observation of grain boundaries and interfaces. It is the only direct structural analysis method for studying nanoparticles.
With this course you will gain a deep understanding of modern TEM and the connection between:
- the optics and operation of the instrument;
- the physics of electron-matter interactions;
- insights into the materials properties of the sample.
This gives the background to:
- identify TEM techniques suitable to solving specific scientific problems;
- interpret TEM data presented in articles; appreciate the impact of technological advances that have, for instance, led to sub-angstrom resolution by aberration correction.
It can also be the basis for subsequent practical training on this remarkable instrument, and a stepping stone towards learning very advanced techniques with magical names like “dark field holography” or “angular resolved electron energy-loss spectroscopy”.
