Fundamentals of Nanoelectronics: Basic Concepts

Provided by:
8/10 stars
based on  2 reviews
Provided by:
Cost FREE
Start Date On demand

Course Details

Cost

FREE

Upcoming Schedule

  • On demand

Course Provider

edX online courses
Harvard University, the Massachusetts Institute of Technology, and the University of California, Berkeley, are just some of the schools that you have at your fingertips with edX. Through massive open online courses (MOOCs) from the world's best universities, you can develop your knowledge in literature, math, history, food and nutrition, and more. These online classes are taught by highly-regarded experts in the field. If you take a class on computer science through Harvard, you may be tau...
Harvard University, the Massachusetts Institute of Technology, and the University of California, Berkeley, are just some of the schools that you have at your fingertips with edX. Through massive open online courses (MOOCs) from the world's best universities, you can develop your knowledge in literature, math, history, food and nutrition, and more. These online classes are taught by highly-regarded experts in the field. If you take a class on computer science through Harvard, you may be taught by David J. Malan, a senior lecturer on computer science at Harvard University for the School of Engineering and Applied Sciences. But there's not just one professor - you have access to the entire teaching staff, allowing you to receive feedback on assignments straight from the experts. Pursue a Verified Certificate to document your achievements and use your coursework for job and school applications, promotions, and more. EdX also works with top universities to conduct research, allowing them to learn more about learning. Using their findings, edX is able to provide students with the best and most effective courses, constantly enhancing the student experience.

Provider Subject Specialization
Sciences & Technology
Business & Management
22621 reviews

Course Description

The modern smartphone is enabled by a billion-plus nanotransistors, each having an active region that is barely a few hundred atoms long. Interestingly the same amazing technology has also led to a deeper understanding of the nature of current flow on an atomic scale and my aim is to make these lessons from nanoelectronics accessible to anyone in any branch of science or engineering. I will assume very little background beyond linear algebra and differential equations, although we will be discussing advanced concepts in non-equilibrium statistical mechanics that should be of interest even to specialists.
 
In the first half of this course (4 weeks) we will introduce a new perspective connecting the quantized conductance of short ballistic conductors to the familiar Ohm's law of long diffusive conductors, along with a brief description of the modern nanotransistor. In the second half (4 weeks) we will address fundamental concep...

The modern smartphone is enabled by a billion-plus nanotransistors, each having an active region that is barely a few hundred atoms long. Interestingly the same amazing technology has also led to a deeper understanding of the nature of current flow on an atomic scale and my aim is to make these lessons from nanoelectronics accessible to anyone in any branch of science or engineering. I will assume very little background beyond linear algebra and differential equations, although we will be discussing advanced concepts in non-equilibrium statistical mechanics that should be of interest even to specialists.
 
In the first half of this course (4 weeks) we will introduce a new perspective connecting the quantized conductance of short ballistic conductors to the familiar Ohm's law of long diffusive conductors, along with a brief description of the modern nanotransistor. In the second half (4 weeks) we will address fundamental conceptual issues related to the meaning of resistance on an atomic scale, the interconversion of electricity and heat, the second law of thermodynamics and the fuel value of information.
 
Overall I hope to show that the lessons of nanoelectronics lead naturally to a new viewpoint, one that changes even some basic concepts we all learn in freshman physics. This unique viewpoint not only clarifies many old questions but also provides a powerful approach to new questions at the frontier of modern nanoelectronics, such as how devices can be built to control the spin of electrons.
 
This course was originally offered in 2012 on nanoHUB-U and the accompanying text was subsequently published by World Scientific. I am preparing a second edition for publication in 2015, which will be used for this course. The manuscript will be made available to registered students.
 
Sample comments:
From Roald Hoffmann, http://en.wikipedia.org/wiki/Roald_Hoffmann
Cornell University
 "… the pedagogical imperative in research is very important to me, and so I really value a kindred spirit. Your (Datta's) online courses are just wonderful!"
 
From anonymous student in previous offering.
"The course was just awesome .. Prof. Datta's style of delivering lecture is mind-blowing."
 
This course is the latest in a series offered by the nanoHUB-U project which is jointly funded by Purdue and NSF with the goal of transcending disciplines through short courses accessible to students in any branch of science or engineering. These courses focus on cutting-edge topics distilled into short lectures with quizzes and practice exams.

Reviews 8/10 stars
2 Reviews for Fundamentals of Nanoelectronics: Basic Concepts

Ratings details

  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars

Rankings are based on a provider's overall CourseTalk score, which takes into account both average rating and number of ratings. Stars round to the nearest half.

Sort By
Mr. Astor profile image
Mr. Astor profile image

Mr. Astor

10/10 starsCompleted
4 years, 3 months ago
Prof Datta is the very best I’ve seen. He covers the fundamentals of Solid State, and presents his (unique) ‘NEW PERSPECTIVE.” He connects with a Global Audience very well, suited for teaching students around the world. His Lessons are thorough, well designed, and Exams are tough. He provides a full Buffet of new ideas, and a review of Classic Physics (Electronics). He imparts to his students - “Supreme Data." Boiler Up !
Was this review helpful? Yes0
 Flag
Student profile image
Student profile image

Student

8/10 starsCompleted
4 years, 5 months ago
I am a researcher in microelectronics fabrication with interests in molecular and organic electronics. This course is an excellent introduction to nanotransport. The strong points (a) Prof Datta is an excellent teacher and has put a lot of effort to cut down everything in small digestible pieces. (b) The formalism is simplified enough to transmit the message. It is advisable for someone following the course to compare always with standard texts of Solid State Theory, Semiconductors, Quantum and Statistical Mechanics. (c) I specially liked the clear presentation of the ballistic model, the relation to thermodynamics and the presentation of the MOS transistor. A couple of (not so) weak points. (a) the connection of ballistic to diffusive regime was clear but left something to be desired. I would like to si more elaboration specially regarding the time and the lambda parameter. (b) There are a few straight forward applications of the g... I am a researcher in microelectronics fabrication with interests in molecular and organic electronics. This course is an excellent introduction to nanotransport. The strong points (a) Prof Datta is an excellent teacher and has put a lot of effort to cut down everything in small digestible pieces. (b) The formalism is simplified enough to transmit the message. It is advisable for someone following the course to compare always with standard texts of Solid State Theory, Semiconductors, Quantum and Statistical Mechanics. (c) I specially liked the clear presentation of the ballistic model, the relation to thermodynamics and the presentation of the MOS transistor. A couple of (not so) weak points. (a) the connection of ballistic to diffusive regime was clear but left something to be desired. I would like to si more elaboration specially regarding the time and the lambda parameter. (b) There are a few straight forward applications of the general current expression that could be discussed or worked out or at least referenced such the Richardson law, the Schottky diode, the Arrhenius dependence in hopping conductance or a couple of models in tunneling. Overall, excellent cource, I am looking forward for part 2!
Was this review helpful? Yes0
 Flag

Rating Details


  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars

Rankings are based on a provider's overall CourseTalk score, which takes into account both average rating and number of ratings. Stars round to the nearest half.