Plasma Physics: Applications

Provided by:
0/10 stars
based on  0 reviews
Provided by:
Cost FREE , Add a Verified Certificate for $49
Start Date In Session

Course Details

Cost

FREE,
Add a Verified Certificate for $49

Upcoming Schedule

  • In Session

Course Provider

edX online courses
Harvard University, the Massachusetts Institute of Technology, and the University of California, Berkeley, are just some of the schools that you have at your fingertips with edX. Through massive open online courses (MOOCs) from the world's best universities, you can develop your knowledge in literature, math, history, food and nutrition, and more. These online classes are taught by highly-regarded experts in the field. If you take a class on computer science through Harvard, you may be tau...
Harvard University, the Massachusetts Institute of Technology, and the University of California, Berkeley, are just some of the schools that you have at your fingertips with edX. Through massive open online courses (MOOCs) from the world's best universities, you can develop your knowledge in literature, math, history, food and nutrition, and more. These online classes are taught by highly-regarded experts in the field. If you take a class on computer science through Harvard, you may be taught by David J. Malan, a senior lecturer on computer science at Harvard University for the School of Engineering and Applied Sciences. But there's not just one professor - you have access to the entire teaching staff, allowing you to receive feedback on assignments straight from the experts. Pursue a Verified Certificate to document your achievements and use your coursework for job and school applications, promotions, and more. EdX also works with top universities to conduct research, allowing them to learn more about learning. Using their findings, edX is able to provide students with the best and most effective courses, constantly enhancing the student experience.

Provider Subject Specialization
Sciences & Technology
Business & Management
23685 reviews

Course Description

This physics course, taught by world-renowned experts in the field, will provide you with an overview of applications in plasma physics. From the study of far distant astrophysical objects over diverse applications in industry, to the ultimate goal of sustainable electricity generation from nuclear fusion.

In the first part of this course, you will learn how nuclear fusion powers our Sun and the stars in the Universe. You will explore the cyclic variation of the Sun’s activity, how plasma flows can generate large-scale magnetic fields, and how these fields can reconnect to release large amounts of energy, manifested for instance by violent eruptions on the Sun.

The second part of this course discusses the key role plasma applications play today in industry and medicine. After a brief survey of the field, you will study in detail how plasmas are generated and sustained in strong electric fields and how this knowledge can be used...

This physics course, taught by world-renowned experts in the field, will provide you with an overview of applications in plasma physics. From the study of far distant astrophysical objects over diverse applications in industry, to the ultimate goal of sustainable electricity generation from nuclear fusion.

In the first part of this course, you will learn how nuclear fusion powers our Sun and the stars in the Universe. You will explore the cyclic variation of the Sun’s activity, how plasma flows can generate large-scale magnetic fields, and how these fields can reconnect to release large amounts of energy, manifested for instance by violent eruptions on the Sun.

The second part of this course discusses the key role plasma applications play today in industry and medicine. After a brief survey of the field, you will study in detail how plasmas are generated and sustained in strong electric fields and how this knowledge can be used to avoid undesired occurrence of plasmas in the form of electrical arcs. You will then, in detail, study the transition region between plasma and material surface, called the sheath, and you will learn why its properties are indispensable for the manufacturing of today’s integrated circuits.

Finally, in the third and most extensive part of this course, you will familiarize yourself with the different approaches to fusion energy, the current status, and the necessary steps from present-day experimental devices towards a fusion reactor providing electricity to the grid.

After deriving the general conditions for net energy gain from fusion, we will focus on magnetic confinement fusion. You will learn about the key ingredients of a magnetic fusion reactor, how to confine, heat, and control fusion plasmas at temperatures of 100 million degrees Kelvin, explore the relevant transport mechanisms, and explore the challenges of plasma wall interactions and structural materials.

To enjoy this course on plasma applications, it is recommended to first familiarize yourself with the plasma physics basics taught in Plasma Physics: Introduction.

Reviews 0/10 stars
0 Reviews for Plasma Physics: Applications

Ratings details

  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars

Rankings are based on a provider's overall CourseTalk score, which takes into account both average rating and number of ratings. Stars round to the nearest half.

No reviews yet. Be the first!

Rating Details


  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars
  • 5 stars
  • 4 stars
  • 3 stars
  • 2 stars
  • 1 stars

Rankings are based on a provider's overall CourseTalk score, which takes into account both average rating and number of ratings. Stars round to the nearest half.